Structure of an XRCC1 BRCT domain: a new protein-protein interaction module.
نویسندگان
چکیده
The BRCT domain (BRCA1 C-terminus), first identified in the breast cancer suppressor protein BRCA1, is an evolutionarily conserved protein-protein interaction region of approximately 95 amino acids found in a large number of proteins involved in DNA repair, recombination and cell cycle control. Here we describe the first three-dimensional structure and fold of a BRCT domain determined by X-ray crystallography at 3.2 A resolution. The structure has been obtained from the C-terminal region of the human DNA repair protein XRCC1, and comprises a four-stranded parallel beta-sheet surrounded by three alpha-helices, which form an autonomously folded domain. The compact XRCC1 structure explains the observed sequence homology between different BRCT motifs and provides a framework for modelling other BRCT domains. Furthermore, the established structure of an XRCC1 BRCT homodimer suggests potential protein-protein interaction sites for the complementary BRCT domain in DNA ligase III, since these two domains form a stable heterodimeric complex. Based on the XRCC1 BRCT structure, we have constructed a model for the C-terminal BRCT domain of BRCA1, which frequently is mutated in familial breast and ovarian cancer. The model allows insights into the effects of such mutations on the fold of the BRCT domain.
منابع مشابه
Role of a BRCT domain in the interaction of DNA ligase III-α with the DNA repair protein XRCC1
The BRCT domain (for BRCA1 carboxyl terminus) is a protein motif of unknown function, comprising approximately 100 amino acids in five conserved blocks denoted A–E. BRCT domains are present in the tumour suppressor protein BRCA1 [1—3], and the domain is found in over 40 other proteins, defining a superfamily that includes DNA ligase III-a and the essential human DNA repair protein XRCC1. DNA li...
متن کاملCentral role for the XRCC1 BRCT I domain in mammalian DNA single-strand break repair.
The DNA single-strand break repair (SSBR) protein XRCC1 is required for genetic stability and for embryonic viability. XRCC1 possesses two BRCA1 carboxyl-terminal (BRCT) protein interaction domains, denoted BRCT I and II. BRCT II is required for SSBR during G(1) but is dispensable for this process during S/G(2) and consequently for cell survival following DNA alkylation. Little is known about B...
متن کاملThe structural basis for partitioning of the XRCC1/DNA ligase III-α BRCT-mediated dimer complexes
The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-α. For efficient ligation, ligase III-α is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT...
متن کاملDiscovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملA cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair.
XRCC1 protein is essential for viability in mammals and is required for efficient DNA single-strand break repair and genetic stability following DNA base damage. We report here that XRCC1-dependent strand break repair in G(1) phase of the cell cycle is abolished by mutations created within the XRCC1 BRCT domain that interact with DNA ligase III. In contrast, XRCC1-dependent DNA strand break rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 17 21 شماره
صفحات -
تاریخ انتشار 1998